LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient activation of peroxymonosulfate by Co-doped mesoporous CeO2 nanorods as a heterogeneous catalyst for phenol oxidation

Photo from wikipedia

Sulfate radical−based advanced oxidation processes have received considerable attentions in the remediation of organic pollutants due to their high oxidation ability. In this study, a novel Co3O4/CeO2 catalyst was fabricated… Click to show full abstract

Sulfate radical−based advanced oxidation processes have received considerable attentions in the remediation of organic pollutants due to their high oxidation ability. In this study, a novel Co3O4/CeO2 catalyst was fabricated and employed as a peroxymonosulfate (PMS) activator to generate SO4•− for phenol degradation. The Co3O4/CeO2 catalyst exhibited a good catalytic performance at a wide pH range of 3.4 to 10.8, and 100% phenol (20 mg/L) was removed within 50-min reaction under optimal conditions with 0.2 g/L catalyst and 2.0 g/L PMS at room temperature. The transformation products and total organic carbon during the degradation process were also determined. The quenching experiments and electron paramagnetic resonance spectra revealed that sulfate radical (SO4•−) rather than other species such as singlet oxygen (1O2) and hydroxyl radical (•OH) was primarily responsible for phenol degradation in the Co3O4/CeO2/PMS system, and a rational mechanism was proposed. Moreover, the recycling experiments as well as low cobalt leaching concentration manifested satisfactory reusability and stability. The effects of various inorganic anions and natural organic matter in real water matrix on phenol oxidation were further evaluated. We believe that the Co3O4/CeO2 composites have promising applications of PMS activation for the degradation of organic pollutants in wastewater treatment.

Keywords: oxidation; phenol oxidation; co3o4 ceo2; catalyst; ceo2

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.