LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics

Photo from wikipedia

The research work investigates the combustion, performance, and emission characteristics of a CI engine using neat biodiesel (B100: 100% rubber seed oil methyl ester) mixed with alumina and titanium oxide… Click to show full abstract

The research work investigates the combustion, performance, and emission characteristics of a CI engine using neat biodiesel (B100: 100% rubber seed oil methyl ester) mixed with alumina and titanium oxide nanoparticles in the proportions of 25 ppm and 50 ppm separately. Nanoparticles (alumina and titanium dioxide) in different proportions like 25 ppm and 50 ppm were mixed with the neat biodiesel, and 2% of surfactant (Span80) was added, and the mixtures were agitated by an ultrasonicator to achieve uniform particle dispersion in the blend. The nanoparticle-blended biodiesel mixtures are designated as B100A25 (B100 + 25 ppm of alumina), B100A50 (B100 + 50 ppm of alumina), B100T25 (B100 + 25 ppm of TiO2), and B100T50 (B100 + 50 ppm of TiO2). Experiments were conducted in a single-cylinder DI diesel engine using neat biodiesel blended with alumina and titanium dioxide nanoparticle mixtures at different operating conditions. The test results revealed that the brake thermal efficiency (BTE) of the engine with nanoparticle-blended fuel (B100T50) increased by 5.2% and brake-specific fuel consumption (BSFC) decreased by 10.56%. The CO, HC, and smoke emissions decreased by 44%, 28%, and 44%, respectively, whereas the NOx emissions increased by 21% as compared to that of neat biodiesel at full load.

Keywords: biodiesel; performance emission; engine; ppm; nanoparticle blended

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.