Inhibition of cholinesterases has been frequently used as a biomarker for contamination of aquatic environments, because these enzymes are frequent targets for toxic effects of contaminants, such as insecticides derived… Click to show full abstract
Inhibition of cholinesterases has been frequently used as a biomarker for contamination of aquatic environments, because these enzymes are frequent targets for toxic effects of contaminants, such as insecticides derived from phosphoric and carbamic acids. However, this enzyme is also responsive to other contaminants, including metals. The use of cholinesterase inhibition as effect criterion in ecotoxicology studies requires the previous characterization of the specific enzymatic forms that can be present in the different tissues and/or organs of species. This work characterized the soluble ChEs present in the brain and dorsal muscle of three marine fish species, namely Scomber scombrus, Sardina pilchardus and Chelidonichthys lucerna. Pesticides (chlorpyrifos) and metals (copper sulphate) in vitro assays were conducted to quantify the effects of these contaminants on cholinesterases activity. The results of this study showed that acetylcholinesterase (AChE) was the predominant form present in the brain tissues of the three species and in the muscle tissue of one species (Sardina pilchardus). For Scomber scombrus and Chelidonichthys lucerna, the cholinesterase form present in the muscle tissue evidenced properties between the classic acetylcholinesterase and those of pseudocholinesterase forms. The results for the metal (copper) and pesticide (chlorpyrifos) showed that this species may be suitable for monitoring contaminations for these types of contaminants.
               
Click one of the above tabs to view related content.