LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dielectric constants of organic pollutants determine their strength for enhancing microbial iron reduction

Photo from wikipedia

Physicochemical properties are essential characteristics of organic compounds, which not only impact the fate of organic pollutants but also determine their application in biological processes. Here, we first found that… Click to show full abstract

Physicochemical properties are essential characteristics of organic compounds, which not only impact the fate of organic pollutants but also determine their application in biological processes. Here, we first found that the dielectric constants (ɛ) of organic pollutants negatively correlated to their strength for enhancing microbial Fe(III) reduction. Those with lower ɛ values than 2.61 potentially promoted the above process following the sequence carbon tetrachloride (CT) > benzene > toluene > tetrachloroethylene (PCE) due to their different ability to deprotonate the phosphorus-related groups on the outer cell membrane of iron-reducing bacteria Shewanella oneidensis MR-1 (MR-1). The stronger deprotonation of phosphorus-related groups induced more negative charge of cell surface and more strongly increased cell membrane permeability and consequently stimulated faster release of flavin mononucleotide (FMN) as an electron shuttle/cofactor for Fe(III) reduction. These findings are significant for understanding the biogeochemistry in multi-organic contaminated subsurface and providing knowledge for remediation strategies and current production.

Keywords: reduction; organic pollutants; strength enhancing; dielectric constants; enhancing microbial; constants organic

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.