LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement of eco-efficient self-compacting concrete manufacture by recycling high quantity of waste materials

Photo from wikipedia

The increasing cost of landfills, and lack of natural large aggregates observing interests for using wastes to produce concrete and mortar materials. Utilizing plastic waste and crushed ceramic waste not… Click to show full abstract

The increasing cost of landfills, and lack of natural large aggregates observing interests for using wastes to produce concrete and mortar materials. Utilizing plastic waste and crushed ceramic waste not only save the landfills cost but also reduce the cost of using natural aggregates. Secondly, tea is the second most consumed beverage at world level and resulted huge amount of waste. Thus, this article attempts to develop the appropriate characteristics of self-compacting concrete (SCC) by adding plastic waste, tea waste, and crushed ceramics. The fresh and hardened properties of the SCC were investigated to examine the addition of waste plastic, whereas the content of tea waste and crushed ceramic was kept constant. The results revealed that the addition of plastic waste caused to reduce SFD, L-Box, segregation, and fresh density, and obtained maximum values as 765 mm, 0.94, 19, and 2382 kg/m3 for PP5 and RP5, respectively, whereas T500 and V-funnel flow gradually increased with increasing waste plastic, and the maximum values were obtained as 3.44 and 16 for RP25 and PP+RP25, respectively. Further, compressive and flexural strengths were decreased with increasing content of waste plastic, and the maximum values were obtained as 55 MPa and 6.5 MPa for PP5 and PP+RP5 at 28 days, respectively. The results proved the possibility of using plastic waste, tea waste, and crushed ceramics in SCC.

Keywords: compacting concrete; plastic waste; waste; waste crushed; tea waste; self compacting

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.