The pretreatment of wheat straw has been recognized to be an essential step prior to anaerobic digestion, owing to the high abundance of lignocellulosic materials. In order to choose economical… Click to show full abstract
The pretreatment of wheat straw has been recognized to be an essential step prior to anaerobic digestion, owing to the high abundance of lignocellulosic materials. In order to choose economical and effective techniques for the disposal of wheat straw, effects of five pretreatment methods including acid, alkali, co-pretreatment of acid and alkali, CaO2, and liquid digestate of municipal sewage sludge on anaerobic digestion of wheat straw were investigated by analyzing biogas production and organic matter degradation in the study. The results showed that among these pretreatment methods, the methane yield was highest in the liquid digestate pretreated-wheat straw with 112.6 mL gTS−1, followed by the acid, alkali, and CaO2 pretreatments, and the lowest was observed in the co-pretreatment of acid and alkali. Illumina MiSeq sequencing of the microbial communities in the anaerobic digesters revealed that the genera Ruminiclostridium including Ruminiclostridium and Ruminiclostridium 1, Hydrogenispora, and Capriciproducens were the main hydrolytic bacteria, acidogenic bacteria, and acetogenic bacteria, respectively, in the anaerobic digesters. Capriciproducens and Hydrogenispora dominated in the first and the later stages, respectively, in the anaerobic digesters, which could work as indicators of the anaerobic co-digestion stage of sludge and wheat straw. The total solid and SO42−-S contents of the solid digestate and the NH4+-N concentration of the liquid digestate had a significant influence on the microbial community in the digesters. These findings indicated that liquid digestate pretreatment was a potential option to improve the anaerobic digestion of wheat straw, due to the low cost without additional chemical agents.
               
Click one of the above tabs to view related content.