LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper

Photo by brandi1 from unsplash

The potential of alkaline cellulo-xylanolytic enzymes from non-pathogenic Bacillus subtilis strain was tested for deinking of photocopier waste paper. Cellulase and xylanase play a crucial role in deinking of different… Click to show full abstract

The potential of alkaline cellulo-xylanolytic enzymes from non-pathogenic Bacillus subtilis strain was tested for deinking of photocopier waste paper. Cellulase and xylanase play a crucial role in deinking of different types of waste paper. Partial purification of cellulo-xylanolytic enzymes was carried out using ultrafiltration followed by ammonium sulfate precipitation. The ultrafiltered enzyme was used for deinking the photocopier waste paper along with chemical deinking. An enzyme dose of 0.6 IU/g and reaction time of 60 min for ultrafiltered cellulo-xylanolytic enzyme significantly increased deinking efficiency, tear index (9.52%) and folding endurance (5±2%) as compared to chemical deinking. There was improvement in strength properties such as tear index and double-fold along with freeness of pulp (18%). There was slight decrease in tensile index (0.6%) and burst index (16%) while ISO brightness remained unaffected. Enzymatic deinking (74.3%) by ultrafiltered cellulo-xylanolytic from Bacillus subtilis was found significant over conventional chemical deinking.

Keywords: xylanolytic enzymes; deinking photocopier; waste paper; cellulo; cellulo xylanolytic

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.