LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite element modelling to assess the submarine groundwater discharge in an over exploited multilayered coastal aquifer

Photo from wikipedia

A three-dimensional variable-density finite element model was developed to quantify the impact of groundwater over use on submarine groundwater discharge (SGD). The model was applied to the Arani-Korttalaiyar river basin,… Click to show full abstract

A three-dimensional variable-density finite element model was developed to quantify the impact of groundwater over use on submarine groundwater discharge (SGD). The model was applied to the Arani-Korttalaiyar river basin, north of Chennai, India. This region has an upper unconfined and lower semi-confined aquifer extending up to 30 km inland from the coast and beyond this distance; the two aquifers merge and become a single unconfined aquifer. The model simulated that during the period from 2000 to 2012, the flux of seawater to the aquifer has increased from 17,000 to 24,500 m3/day due to over-exploitation of groundwater from the semi-confined aquifer. Where as in the unconfined aquifer, SGD has been taking place. Scenarios showing the impact of newly constructed managed aquifer recharge structures, 10% additional increase in rainfall recharge, and termination of pumping from five well-fields on the groundwater conditions in the area were studied. The model predicted a SGD of 85,243 m3/day from the unconfined aquifer and 22,414 m3/day from the semi-confined aquifer by the end of 2030. By adopting managed aquifer recharge methods, seawater intrusion (rate of 4,408 m3/day) can be reduced and SGD (rate of 22,414 m3/day) increased. The rate of SGD increase and the movement of seawater to aquifer can be completely prevented in the semi-confined aquifer by adopting these management options by 2030. Findings from this study have enhanced the understanding of SGD and water budget, which can be used by decision-makers for the sustainable management of groundwater resources in coastal aquifers.

Keywords: finite element; groundwater; aquifer; submarine groundwater; day; groundwater discharge

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.