LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity

Photo from wikipedia

Fluorapatite (FAp) is the largest phosphorous (P) reservoir on Earth. However, due to its low solubility, dissolved P is severely deficient in the pedosphere. Fungi play a significant role in… Click to show full abstract

Fluorapatite (FAp) is the largest phosphorous (P) reservoir on Earth. However, due to its low solubility, dissolved P is severely deficient in the pedosphere. Fungi play a significant role in P dissolution via excretion of organic acids, and in this regard, it is important to understand their impact on P cycling. The object of this study was to elucidate the balance between P release and F toxicity during FAp dissolution. The bioweathering of FAp was assisted by a typical phosphate-solubilizing fungus, Aspergillus niger. The release of elements and microbial activities were monitored during 5-day incubation. We found that the release of fluorine (F) was activated after day 1 (~90 mg/L), which significantly lowered the phosphate-solubilizing process by day 2. Despite P release from FAp being enhanced over the following 3 days, decreases in both the amount of biomass (52% decline) and the respiration rate (81% decline) suggest the strong inhibitory effect of F on the fungus. We thus concluded that F toxicity outweighs P supply, which in turn inhibits fungi growth and prevents further dissolution of FAp. This mechanism might reflect an underappreciated cause for P deficiency in soils.

Keywords: toxicity; phosphate solubilizing; dissolution; balance; release

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.