LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: a case study of the Nile Delta aquifer, Egypt

Photo from wikipedia

To monitor groundwater salinization due to seawater intrusion (SWI) in the aquifer of the eastern Nile Delta, Egypt, we developed a predictive regression model based on an innovative approach using… Click to show full abstract

To monitor groundwater salinization due to seawater intrusion (SWI) in the aquifer of the eastern Nile Delta, Egypt, we developed a predictive regression model based on an innovative approach using SWI indicators and artificial intelligence (AI) methodologies. Hydrogeological and hydrogeochemical data of the groundwater wells in three periods (1996, 2007, and 2018) were used as input data for the AI methods. All the studied indicators were enrolled in feature extraction process where the most significant inputs were determined, including the studied year, the distance from the shoreline, the aquifer type, and the hydraulic head. These inputs were used to build four basic AI models to get the optimal prediction results of the used indicators (the base exchange index (BEX), the groundwater quality index for seawater intrusion (GQISWI), and water quality). The machine learning models utilized in this study are logistic regression, Gaussian process regression, feedforward backpropagation neural networks (FFBPN), and deep learning-based long-short-term memory. The FFBPN model achieved higher evaluation results than other models in terms of root mean square error (RMSE) and R2 values in the testing phase, with R2 values of 0.9667, 0.9316, and 0.9259 for BEX, GQISWI, and water quality, respectively. Accordingly, the FFBPN was used to build a predictive model for electrical conductivity for the years 2020 and 2030. Reasonable results were attained despite the imbalanced nature of the dataset for different times and sample sizes. The results show that the 1000 μS/cm boundary is expected to move inland ~9.5 km (eastern part) to ~10 km (western part) to ~12.4 km (central part) between 2018 and 2030. This encroachment would be hazardous to water resources and agriculture unless action plans are taken.

Keywords: predictive model; model; salinization; artificial intelligence; nile delta

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.