LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of fluoride from coke wastewater by aluminum doped chelating ion-exchange resins: a tertiary treatment

Photo from wikipedia

Coke wastewater is one of the most problematic industrial wastewaters, due to its large volume and complex pollutant load. In this study, ion exchange technology was investigated with the objective… Click to show full abstract

Coke wastewater is one of the most problematic industrial wastewaters, due to its large volume and complex pollutant load. In this study, ion exchange technology was investigated with the objective of reducing the fluoride content of the effluent from a coke wastewater treatment plant (26.7 mg F-/L). Two Al-doped exchange resins with chelating aminomethyl-phosphonic acid and iminodiacetic groups were assessed: Al-doped TP260 and TP207 resins, respectively. The effect of resin dosage, varying from 5 to 25 g/L, was evaluated. F- removal was within the range 57.8–89.3% and 72.0–92.1% for Al-doped TP260 and TP207, respectively. A kinetic study based on a generalized integrated Langmuir kinetic equation fitted the experimental data (R2 > 0.98). The parameters of the said kinetics met the optimal conditions for the ion exchange process, which seemed to be more favorable with Al-doped TP260 resin than with Al-doped TP207 resin, using the same resin dosage. Furthermore, the experimental data were well described (R2 > 0.98) by Langmuir and Freundlich isotherm models, in agreement with the findings of the kinetic study: the maximum sorption capacity was obtained for the Al-doped TP260 resin.

Keywords: ion exchange; exchange resins; coke wastewater; doped tp260; exchange

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.