LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and performance of a biological dust suppressant based on the synergistic effect of enzyme-induced carbonate precipitation and surfactant

Photo from wikipedia

To control the dust pollution caused by open-pit coal mining and reduce or avoid the secondary hazards of existing dust suppressants to the environment, a biological dust suppressant was prepared… Click to show full abstract

To control the dust pollution caused by open-pit coal mining and reduce or avoid the secondary hazards of existing dust suppressants to the environment, a biological dust suppressant was prepared through the synergistic effect of a surfactant and an enzyme-induced carbonate precipitation. The optimal ratio of biological dust suppressant was determined, and the dust suppressive effect and dust consolidation mechanism of the biological dust suppressant were investigated. The results showed that the optimal biological dust suppressant had an alkyl polyglycoside (APG) concentration of 0.3 wt.%, a urea-CaCl2 concentration of 0.6 mol/L, and a urease to urea-CaCl2 volume ratio of 1:3. The wind erosion resistance of coal dust treated with this dust suppressant was enhanced by 86.69%. The adsorption of the biological dust suppressant by coal dust was mainly due to the electrostatic interaction between the surfactant and coal dust. The mineralization product of the dust suppressant was calcite-type CaCO3, which consolidated coal dust due to the formation of intermolecular hydrogen bonds between CaCO3 and coal dust.

Keywords: coal dust; dust; dust suppressant; biological dust

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.