Microplastics and associated adverse effects have been on the global agenda in recent years. Because of its importance as a model organism for studies on developmental biology, Xenopus laevis has… Click to show full abstract
Microplastics and associated adverse effects have been on the global agenda in recent years. Because of its importance as a model organism for studies on developmental biology, Xenopus laevis has been chosen as the study animal in in vitro teratogenesis studies. FETAX test uses early-stage embryos of X. laevis to measure the potential of substances to cause mortality, malformation, and growth inhibition in developing embryos. The aim of this study was to examine the effects of high molecular weight polyvinyl chloride (HMW-PVC) on parental X. laevis frogs and their embryos using the FETAX test. To this purpose, a HMW-PVC dose of 1% of body weight/twice each week was provided to frogs by oral gavage throughout 6 weeks. After the procedure, oocytes and sperms of HMW-PVC-exposed frogs were fertilized and FETAX was applied to selected embryos. After the completion of a 96-h incubation period, tadpoles were examined, their live/dead status were determined, their lengths were measured, and their anomalies were photographed. Besides, excised organs of the parental frogs were referred to histopathology examination. On the other hand, the mRNA expression levels of Hsp70, Myf5, Bmp4, Pax6, and Esr1 genes were determined by applying real-time quantitative PCR method to cDNA which was synthesized from the total RNA of embryos. The results showed that treatment with HMW-PVC dose of 1% of body weight/twice each week caused malformations and decreased viability. Hsp70 and Pax6 gene expression levels significantly decreased in all assay groups, as compared with controls. Lung and intestine tissues showed normal appearance in histopatological examination. Further research is required to explain the whole effects of HMW-PVC exposure on X. laevis embryos.
               
Click one of the above tabs to view related content.