LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous hydrodynamic mixing weakens the dominance of Microcystis: evidences from microcosm and lab experiments

Photo from wikipedia

Hydrodynamic mixing is one of the important environment factors in determining phytoplankton community compositions. Here the influences of continuous hydrodynamic mixing on abundance, morphology, and dominance of Microcystis were investigated… Click to show full abstract

Hydrodynamic mixing is one of the important environment factors in determining phytoplankton community compositions. Here the influences of continuous hydrodynamic mixing on abundance, morphology, and dominance of Microcystis were investigated in microcosm and lab experiments. Our research results showed that Cyanophyta contributed 57.16% to the total biomass in control, but Chlorophyta was the dominant group in continuous hydrodynamic mixing (CHM) group, contributing 76.54% to the total biomass in the microcosm experiment. The average number of Microcystis in control was 1.95 folds in CHM group. However, the mean abundance of Scenedesmus quadricauda and Pseudanabaena limnetica in CHM was 2.47 and 2.97 folds in control. In the lab experiment, the average number of Microcystis flos-aquae in control was 2.97 folds in CHM group. The mean size of M. flos-aquae colony in control (34.65 μm) group were significantly bigger than that in the CHM (26.78 μm) group. This research results demonstrated that continuous hydrodynamic mixing weakened the dominance of Microcystis, but was beneficial for the others algae (S. quadricauda and P. limnetica) and is helpful in understanding the effect of hydrodynamic mixing on Microcystis blooms in freshwater ecosystem.

Keywords: dominance microcystis; microcystis; hydrodynamic mixing; group; continuous hydrodynamic

Journal Title: Environmental Science and Pollution Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.