In this study, nanomaterials (ZnO and CaO) and ZnO-CaO nanocomposites (Zn25Ca75O; Zn50Ca50O; Zn75Ca25O) were prepared using co-precipitation method and physico-chemically characterized by XRD, FT-IR, and SEM with EDAX analysis. The… Click to show full abstract
In this study, nanomaterials (ZnO and CaO) and ZnO-CaO nanocomposites (Zn25Ca75O; Zn50Ca50O; Zn75Ca25O) were prepared using co-precipitation method and physico-chemically characterized by XRD, FT-IR, and SEM with EDAX analysis. The XRD pattern of ZnO nanomaterials exhibits hexagonal wurtzite structure and CaO nanomaterials exhibit face-centered cubic (FCC) structure whereas nanocomposites (Zn75Ca25O, Zn50Ca50O, Zn25Ca75O) exhibit both hexagonal phase of ZnO and cubic phase of CaO. The SEM images of ZnO-CaO nanocomposites show the well-distributed clusters composed of ZnO and CaO nanoparticles with most of the particles are spherical and some of the particles are rod- and cubic-like morphology. Furthermore, nanomaterials and nanocomposites were used as nano-seed priming agents to assess the seed germination and seedling growth parameters of mung beans. Among the nano-seed priming agents, 500 ppm concentration of the nanocomposite (Zn50Ca50O) showed significant enhancement of germination (100%) and shoot length (11.7 cm), root length (8.9 cm), and vigor index (1910) than other nanomaterials and nanocomposites.
               
Click one of the above tabs to view related content.