LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Occurrence and driving forces of different nitrogen forms in the sediments of the grass and algae-type zones of Taihu Lake

Photo from wikipedia

Excessive nitrogen (N) load in sediments is at risk of release resulting in the degradation of grass-type lake ecosystems. At present, the occurrence characteristics of N forms and the driving… Click to show full abstract

Excessive nitrogen (N) load in sediments is at risk of release resulting in the degradation of grass-type lake ecosystems. At present, the occurrence characteristics of N forms and the driving forces of organic N (ON) hydrolysis in the sediments of Taihu Lake were still unclear. Here, 52 sampling sites in 7 lake areas in Taihu Lake were investigated to compare the spatial occurrence characteristics of the sedimentary free N (FN), exchangeable N (EN), acid hydrolyzable N (HN), and residual N (RN) and their associated driving forces. The results showed that the total N contents in the dry sediment ranged from 1811.56 to 5594.06 mg kg−1, and the contribution was in the order of RN > HN > EN > FN. Spatially, RN and total organic carbon were significantly consistently influenced by dam construction and deposition algal residue. The HN concentration was high in the estuaries affected by N inputs from the rivers. The coupling relationship of spatial distribution between ON and N forms was revealed. The factors, i.e., algal residue deposition and terrigenous N inputs, were considered as the main driving forces stimulating the ON hydrolysis in the algae-type lake zones. It can be deduced that controlling terrigenous N inputs and sediment suspension may be the key to inhibiting the transformation from grass-type to algae-type lake ecosystem.

Keywords: grass; driving forces; algae type; taihu lake; type

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.