LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation modeling the effects of peels on pesticide removal from potatoes during household food processing

Photo from wikipedia

The impact of crop peels on reducing pesticide residue levels in crops during household food processing was evaluated in this study. We proposed a series of pesticide fate models to… Click to show full abstract

The impact of crop peels on reducing pesticide residue levels in crops during household food processing was evaluated in this study. We proposed a series of pesticide fate models to simulate the removal efficiency of residues in crop peels and medullas (i.e., pulps) via soaking and washing. The simulated results indicated that the variation in the peel thickness had a significant impact on residue removal from the peel compartment. However, the peel compartment had a low impact on the removal efficiency of pesticide residues from the medulla compartment, as demonstrated by the simulated results from the non-peel model (i.e., already peeled crops). In addition, we observed that even though systemic pesticides have a higher potential to penetrate from the peel into the medulla, the increasing residue level caused by the mass transfer from the peel into the medulla is too low to cause human health damage, because the absolute mass of residues in the peel is considerably small. Based on the simulation results, we concluded that washing or soaking crops with or without peels using water is not effective in reducing residue levels in crop medullas. Modifying crops into slices, instead of directly washing or soaking crops, could significantly improve the removal efficiency of pesticide residues inside the medulla. The models proposed in this study can improve our understanding on the fate of pesticides in crops during household food processing.

Keywords: household food; food processing; removal; pesticide

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.