LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method

Photo from wikipedia

The Büyük Menderes watershed is the largest drainage watershed in Western Anatolia with an area of approximately 26,000 km2. In the study area, almost 863 landslides occurred, extending over 222… Click to show full abstract

The Büyük Menderes watershed is the largest drainage watershed in Western Anatolia with an area of approximately 26,000 km2. In the study area, almost 863 landslides occurred, extending over 222 km2 with a mean landslide area of 0.21 km2. In this study, landslide susceptibility assessments were carried out using artificial neural network method, which is one of the data-driven methods. In this study, that will contribute to the mitigation or control of the landslides caused by the reasons controlling the spatial and temporal distribution of landslides created in the GIS and MATLAB environment by using scientific and technological approaches within the framework. Since derivative activation function is also used in back-propagation artificial neural networks, its derivative is easily calculated in order not to slow down the calculation. Levenberg–Marquardt back-propagation (LM), resilient back propagation back-propagation (trainrp), scaled conjugate gradient back-propagation (trainscg), conjugate gradient with Powell/Beale restarts back-propagation (traincgb), and Fletcher-Powell conjugate gradient back-propagation (traincgf) algorithms are used, which constantly interrogate the link between the input parameter and the result output, and at least one cell’s output is given as an input to any other cell. Geology, digital elevation model, slope, topographic wetness index, roughness index, plan, profile curvatures, and proximity to active faults and rivers were used as landslide conditioning factors. In susceptibility assessments, landslides were separated by 70% analysis, 15% test, and 15% validation datasets by random selection method. The performances of the landslide susceptibility maps were assessed by the area under the ROC curve (AUC), accuracy (ACC), precision, recall, F1 score, Kappa test error histogram, and confusion matrix, respectively. The area under the receiver operating characteristic curves, analysis, testing, validation, landslides, and study areas were found between 0.873 and 0.911. The susceptibility map had a high prediction rate in which high and very high susceptible zones corresponded to 26% of the study area including 82% of the recorded landslides.

Keywords: landslide susceptibility; area; susceptibility; artificial neural; back propagation

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.