LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fate of bis-(4-tert-butyl phenyl)-iodonium under photolithography relevant irradiation and the environmental risk properties of the formed photoproducts

Photo by rafaelatantya from unsplash

Aryl-iodonium salts are utilized as photoacid generators (PAGs) in semiconductor photolithography and other photo-initiated manufacturing processes. Despite their utilization and suspected toxicity, the fate of these compounds within the perimeter… Click to show full abstract

Aryl-iodonium salts are utilized as photoacid generators (PAGs) in semiconductor photolithography and other photo-initiated manufacturing processes. Despite their utilization and suspected toxicity, the fate of these compounds within the perimeter of semiconductor fabrication plants is inadequately understood; the identification of photolithography products is still needed for a comprehensive environmental impact assessment. This study investigated the photolytic transformation of a representative iodonium PAG cation, bis-(4-tert-butyl phenyl)-iodonium, under conditions simulating industrial photolithography. Under 254-nm irradiation, bis-(4-tert-butyl phenyl)-iodonium reacted rapidly with a photolytic half-life of 39.2 s; different counter ions or solvents did not impact the degradation kinetics. At a semiconductor photolithography-relevant UV dosage of 25 mJ cm−2, 33% of bis-(4-tert-butyl phenyl)-iodonium was estimated to be transformed. Six aromatic/hydrophobic photoproducts were identified utilizing a combination of HPLC–DAD and GC–MS. Selected photoproducts such as tert-butyl benzene and tert-butyl iodobenzene had remarkably higher acute microbial toxicity toward bacterium Aliivibrio fischeri compared to bis-(4-tert-butyl phenyl)-iodonium. Octanol–water partition coefficients estimated using the Estimation Programs Interface Suite™ indicated that the photoproducts were substantially more hydrophobic than the parent compound. The results fill a critical data gap hindering the environmental impact assessment of iodonium PAGs and provide clues on potential management strategies for both iodonium compounds and their photoproducts.

Keywords: tert butyl; bis tert; phenyl iodonium; butyl phenyl; iodonium

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.