In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants… Click to show full abstract
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2′,3,3′,4,4′,5,′5′,6,6′-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 μg L−1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid–reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 μg L−1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 μg L−1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.
               
Click one of the above tabs to view related content.