LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of the effect of pyrite and alkali-modified rice husk substrates on enhancing nitrogen and phosphorus removals in constructed wetlands

Photo by aleexcif from unsplash

The combined effects and respective advantages of using pyrite and alkali-modified rice husk (RH) were studied as substrates for nitrogen and phosphorus removal from constructed wetlands, and the effects of… Click to show full abstract

The combined effects and respective advantages of using pyrite and alkali-modified rice husk (RH) were studied as substrates for nitrogen and phosphorus removal from constructed wetlands, and the effects of the carbon to nitrogen (C/N) ratio and the tidal flow mode on system performance were explored. The results showed that alkali-modified RH, which enhances heterotrophic denitrification, had far more advantages than pyrite, which enhances autotrophic denitrification, and alkali-modified RH can be used for the treatment of sewage containing low C/N ratios. At a C/N ratio of 1.5, the total nitrogen (TN) removal rates exceeded 95%. However, the removal efficiency of the system with only pyrite only reached 76.90% when the influent C/N ratio was 6. Pyrite achieved a total phosphorus (TP) removal 10–20% higher than that of the control group. The tidal flow CWs showed enhanced nitrification, and the NH4+-N removal rates increased by approximately 10%, but the increase in dissolved oxygen (DO) was still insufficient to meet the needs of the systems, leading to limited TP removal. The combination of pyrite and alkali-modified RH was optimal for improving the ability of constructed wetlands to treat wastewaters, simultaneously removing nitrogen and phosphorus from sewage containing low C/N ratios. Combined with the tidal flow mode strategy, the use of pyrite and alkali-modified RH as substrates showed substantial advantages for improving water quality.

Keywords: pyrite alkali; alkali modified; nitrogen phosphorus; constructed wetlands

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.