LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A pilot study for enhanced transformation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicides through immobilized laccase mediator system

This pilot investigation aimed to evaluate the removal efficiency and the underlying biocatalytic pathways of immobilized fungal laccase during the oxidative biotransformation of a non-phenolic metabolite, 3,5-dichloroaniline (3,5-DCA) derived from… Click to show full abstract

This pilot investigation aimed to evaluate the removal efficiency and the underlying biocatalytic pathways of immobilized fungal laccase during the oxidative biotransformation of a non-phenolic metabolite, 3,5-dichloroaniline (3,5-DCA) derived from dicarboximide fungicides. The maximum loading of laccase on the microporous support surfaces could reach 36.4 mg/g. The immobilized laccase on the microporous support surfaces exhibited excellent thermal stability, pH adaptability, storage stability, and reusability compared to free laccase. The ILMS assay indicated that the immobilized laccase efficiently removed studied 3,5-DCA (99–100%) in the aqueous medium, within 72 h in the presence of catechol. In this study, we identified three coupling reaction products during the removal of 3,5-DCA through an ILMS assay. Based on the identified coupling reaction products, we proposed the reaction pathway for the biotransformation of 3,5-DCA by immobilized laccase, which was shown to be potentially useful in the sustainable environmental remediation of aniline metabolite (i.e., 3,5-DCA) derived from dicarboximide fungicides.

Keywords: dicarboximide fungicides; laccase; metabolite dichloroaniline; derived dicarboximide; pilot; immobilized laccase

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.