LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of magnetic nanoparticles and their effects on growth and physiological parameters of Calotropis procera seedlings

Photo by jeremybishop from unsplash

The present study was carried out to elucidate effects of synthesized magnetic nanoparticles (MNPs) on morphological and physiological parameters and main essential oil components of Calotropis procera seedlings. For this… Click to show full abstract

The present study was carried out to elucidate effects of synthesized magnetic nanoparticles (MNPs) on morphological and physiological parameters and main essential oil components of Calotropis procera seedlings. For this purpose, 21-day-old seedlings grown under hydroponic conditions were treated by the different MNP concentrations (0, 50, 100, 150, and 200 mg L-1). The results showed that the growth parameters, chlorophyll pigments, soluble sugars, and total proteins significantly increased in leaf under MNP treatment, except for the root length. As compared to the control, MNPs induced a substantial change in the activities of antioxidant enzymes, H2O2, and malondialdehyde contents. Ascorbate peroxidase activity showed a meaningful increase in leaf treated with 200 mg L-1 MNPs, while superoxide dismutase activity and concentration of H2O2 conspicuously decreased relative to the control. Moreover, MNPs enhanced geranial, 1,8-cineol, a-phellandrene, citronellal, camphor, and terpinen-4-ol contents as major components. These results suggest that MNPs could be a promising method of iron application in agricultural systems. Regarding the effects of MNPs, 200-mg L-1 MNPs were most effective on the production of main essential oils and plant growth that could serve as a favorable elicitor for plant improvement.

Keywords: synthesis magnetic; growth; calotropis procera; physiological parameters; magnetic nanoparticles; procera seedlings

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.