LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and optimization of photovoltaic serpentine type thermal solar collector with thermal energy storage system for hot water and electricity generation for single residential building

Photo from wikipedia

Increasing surface temperature has a significant effect on the electrical performance of photovoltaic (PV) panels. A closed-loop forced circulation serpentine tube design of cooling water system was used in this… Click to show full abstract

Increasing surface temperature has a significant effect on the electrical performance of photovoltaic (PV) panels. A closed-loop forced circulation serpentine tube design of cooling water system was used in this study for effectively management of the surface temperature of PV panels. A real-time experiment was first carried out with a PV panel with a cooling system at heat transfer fluid (HTF) flow rates of 60 kg h−1, 120 kg h−1, and 180 kg h−1. Based on the experimentation, a correlation for a nominal operating cell temperature (NOCT) and thermal efficiency for collector was developed for experimental validation of useful energy gained, cell temperature, and electric power generation. The developed correlations were validated with the use of electric power electrical power and useful energy gained in photovoltaic serpentine thermal solar collector (PV/STSC) and fitting into the experimental results with a deviation of 1% and 2.5% respectively. Further, with the help of developed correlations, a system was developed in the TRNSYS tool through which an optimization study was performed based on electric and hot water demand. The findings indicated an optimal system with an 8-m2 PV/STSC area, a HTF flow rate of 60 kg h−1, and thermal energy storage (TES) system having a volume and height of 280 l and 0.8 m could meet 91% and 33% of the hot water demand for Ac loads and 78% or DC loads, respectively.

Keywords: hot water; system; water; collector; serpentine; energy

Journal Title: Environmental Science and Pollution Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.