LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A stable CH4 sink responding to extreme precipitation events in a fenced semiarid steppe

Photo from wikipedia

PurposeClimate models predict that amplification of the hydrological cycle results in more extreme (more intensive but less frequent) precipitation events (EPEs) that have larger effects on ecosystem functioning than mean… Click to show full abstract

PurposeClimate models predict that amplification of the hydrological cycle results in more extreme (more intensive but less frequent) precipitation events (EPEs) that have larger effects on ecosystem functioning than mean precipitation conditions. Semiarid grassland ecosystems are considered important CH4 sinks whose functioning is greatly affected by variations in precipitation patterns. An experiment was performed to assess the effects of extreme precipitation events on the functioning of a fenced semiarid steppe grassland on the Inner Mongolian Plateau of China.Materials and methodsExtreme precipitation events (282 mm over 20 consecutive days) during the middle (Pm) and late (Ps) growing periods of 2014 were simulated to assess the effects of extreme precipitation events on the CH4 uptake of the ecosystem.Results and discussionThe extreme precipitation events had no significant effect on the CH4 uptake rate during the growing season but did result in 62 and 45% reductions in the CH4 uptake rate during the Pm and Ps events, respectively. There were legacy effects on suppression of the CH4 uptake rate for approximately 40 and 35 days after the events in the Pm and Ps plots, respectively, but the suppression disappeared rapidly during the late season as a result of faster water loss. No significant differences in cumulative CH4 uptake were detected between the treatment and the control plots over the growing season as a whole, which demonstrates that the ecosystem functions as a CH4 sink. The average CH4 uptake rates were found to be strongly regulated by changes in the soil water content.ConclusionsThe results suggest that the CH4 uptake budget of this fenced steppe grassland can be maintained even in the face of consecutive extreme precipitation events, regardless of the timing of the events. Nevertheless, long-term experiments are needed to detect the thresholds for CH4 uptake budget changes, in case of an increasing occurrence of EPEs in the future.

Keywords: precipitation; precipitation events; extreme precipitation; fenced semiarid; semiarid steppe; ch4 uptake

Journal Title: Journal of Soils and Sediments
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.