PurposeDetermining the hydraulic conductivity of low permeable fine-grained soils is difficult and time-consuming. This work develops a new method with an eye to the pore morphology to correlate hydraulic conductivity… Click to show full abstract
PurposeDetermining the hydraulic conductivity of low permeable fine-grained soils is difficult and time-consuming. This work develops a new method with an eye to the pore morphology to correlate hydraulic conductivity with pore-size distribution (PSD) parameters obtained from mercury porosimeter data. In order to realize this method, calculating percolation loss along the flow paths in pore channels and quantifying the spatial morphology of pore channels by proposing a cavity-throat connecting model is necessary.Materials and methodsIn order to establish the standard process of the new method, a kind of sedimentary mucky clay with regular dual-structural PSD has been collected. The samples are divided into three series: (a) vibrated with variable frequencies; (b) frozen at variable temperatures and unfrozen, making the freezing-thawing effect as the variable; and (c) remolded with different water contents. The PSD of freeze-dried samples at the end of each process is obtained by mercury intrusion porosimetry. After that, the method is demonstrated with application to 12 series of fine-grained soils.Results and discussionDeduced from mercury porosimeter data, the volume-based PSD curves of fine-grained soils are bimodal, due to the presence of inter-aggregate and intra-aggregate pores. Two important hypotheses have been proposed: (i) one is that in the smaller pore scales, the experimental extrusion curve controlled by the hysteresis loop has a really approximate part compared to the theoretical overall retraction curve, making the experimental extrusion curve characterize the pore cavity size approximately, and (ii) the pore system consists of a series of multistage cavity-throat connections. Accumulating the effects of single connection on the percolation can be used to measure the overall effects of pore system on the percolation. Based on fluid-driven path analysis of percolation, the pore system is quantified by a series of cavity-throat connections and the percolation loss has been derived to estimate the hydraulic conductivity.ConclusionsThe permeable parameter (κ) representing the overall effects of pore connections on the hydraulic conductivity (K) is suited to correlate the microstructure and hydraulic conductivity by the linear relationship with the fixed slope in semilogarithmic coordinate for the fine-grained soils. It is the destruction and recombination of cavity-throat connections that are dominant during the treatments like freezing, remolding, and reinforcing.
               
Click one of the above tabs to view related content.