The purposes of this study were to analyse the spatiotemporal variations in greenhouse gas diffusive fluxes at the sediment–water interface of sewage-draining rivers and natural rivers, and investigate the factors… Click to show full abstract
The purposes of this study were to analyse the spatiotemporal variations in greenhouse gas diffusive fluxes at the sediment–water interface of sewage-draining rivers and natural rivers, and investigate the factors responsible for the changes in greenhouse gas diffusive fluxes. Greenhouse gas diffusive fluxes at the sediment–water interface of rivers in Tianjin city (Haihe watershed) were investigated during July and October 2014, and January and April 2015 by laboratory incubation experiments. The influence of environmental variables on greenhouse gas diffusive fluxes was evaluated by Spearman’s correlation analysis and a multiple stepwise regression analysis. Sewage-draining rivers were more seriously polluted by human sewage discharge than natural rivers. The greenhouse gas diffusive fluxes at the sediment–water interface exhibited obvious spatiotemporal variations. The mean absolute value of the CO2 diffusive fluxes was seasonally variable with spring>winter>fall>summer, while the mean absolute values of the CH4 and N2O diffusive fluxes were both higher in summer and winter, and lower in fall and spring. The annual mean values of the CO2, CH4 and N2O diffusive fluxes at the sewage-draining river sediment–water interface were − 123.26 ± 233.78 μmol m−2 h−1, 1.88 ± 6.89 μmol m−2 h−1 and 1505.03 ± 2388.46 nmol m−2 h−1, respectively, which were 1.22, 4.37 and 134.50 times those at the natural river sediment–water interface, respectively. The spatial variation of the N2O diffusive fluxes in the sewage-draining rivers and the natural rivers was the most significant. As a general rule, the more serious the river pollution was, the greater the diffusive fluxes of the greenhouse gases were. On average for the whole year, the river sediment was the sink of CO2 and the source of CH4 and N2O. There were positive correlations among the CO2, CH4 and N2O diffusive fluxes. The main influencing factor for CO2 and N2O diffusive fluxes was the water temperature of the overlying water; however, the key factors for CH4 diffusive fluxes were the Eh of the sediment and the NH4+-N of the overlying water. River sediment can be either a sink or a source of greenhouse gases, which varies in different levels of pollution and different seasons. Human sewage discharge has greatly affected the carbon and nitrogen cycling of urban rivers.
               
Click one of the above tabs to view related content.