LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-Scale Estimation of Distribution Algorithms with Adaptive Heavy Tailed Random Projection Ensembles

Photo from wikipedia

We present new variants of Estimation of Distribution Algorithms (EDA) for large-scale continuous optimisation that extend and enhance a recently proposed random projection (RP) ensemble based approach. The main novelty… Click to show full abstract

We present new variants of Estimation of Distribution Algorithms (EDA) for large-scale continuous optimisation that extend and enhance a recently proposed random projection (RP) ensemble based approach. The main novelty here is to depart from the theory of RPs that require (sub-)Gaussian random matrices for norm-preservation, and instead for the purposes of high-dimensional search we propose to employ random matrices with independent and identically distributed entries drawn from a t-distribution. We analytically show that the implicitly resulting high-dimensional covariance of the search distribution is enlarged as a result. Moreover, the extent of this enlargement is controlled by a single parameter, the degree of freedom. For this reason, in the context of optimisation, such heavy tailed random matrices turn out to be preferable over the previously employed (sub-)Gaussians. Based on this observation, we then propose novel covariance adaptation schemes that are able to adapt the degree of freedom parameter during the search, and give rise to a flexible approach to balance exploration versus exploitation. We perform a thorough experimental study on high-dimensional benchmark functions, and provide statistical analyses that demonstrate the state-of-the-art performance of our approach when compared with existing alternatives in problems with 1 000 search variables.

Keywords: large scale; estimation distribution; random projection; heavy tailed; distribution algorithms; distribution

Journal Title: Journal of Computer Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.