LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Constituents of Morus alba var. multicaulis leaf improve lipid metabolism by activating the AMPK signaling pathway in HepG2 cells.

Photo by p1mm1 from unsplash

One new compound, 3Z-1-O-β-D-glucopyranosyl-3-hexene-1,5-diol (1), together with 26 known isolates (2-27) were obtained from the leaf of Morus alba var. multicaulis. Among the known compounds, 7, 11, 12, 14, 15,… Click to show full abstract

One new compound, 3Z-1-O-β-D-glucopyranosyl-3-hexene-1,5-diol (1), together with 26 known isolates (2-27) were obtained from the leaf of Morus alba var. multicaulis. Among the known compounds, 7, 11, 12, 14, 15, 18, 19, 23, and 24 were firstly obtained from the Morus genus; 2-5, 8, 10, 13, and 20 were firstly isolated from M. alba. var. multlcaulis. Meanwhile, the NMR data of 20 and 23 have been reported here for the first time. Moreover, compounds 1-11, 13, 21, and 23-27 showed inhibitory effects on triglyceride (TG) accumulation in HepG2 cells. In mechanism, compound 1 could activate the phosphorylation of AMP-activated protein kinase α (AMPKα) to accelerate the β-oxidation of fatty acids via promoting the phosphorylation of acetyl-CoA carboxylase 1 and up-regulating carnitine palmitoyl-transferase 1A. Besides, compound 1 exerted lipolysis effect by activating hormone-sensitive lipase. In brief, compound 1 might play a role by up-regulating phosphorylation of AMPKα, enhancing the fatty acid β-oxidation and lipolysis. 27 compounds were obtained from the leaf of Morus alba var. multicaulis. Among them, 18 showed inhibitory effects on TG accumulation in HepG2 cells. Moreover, the new compound, 3Z-1-O-β-D-glucopyranosyl-3-hexene-1,5-diol (1), was found to play a role by up-regulating phosphorylation of AMPKα, enhancing the fatty acids β-oxidation and lipolysis.

Keywords: var multicaulis; morus alba; hepg2 cells; compound; var; alba var

Journal Title: Journal of natural medicines
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.