LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces

Photo from archive.org

In this paper, we systematically study several classes of maximal singular integrals and maximal functions with rough kernels in $$\mathscr{F}_{\beta}\left(\mathrm{S}^{n-1}\right)$$ ℱ β ( S n − 1 ) , a… Click to show full abstract

In this paper, we systematically study several classes of maximal singular integrals and maximal functions with rough kernels in $$\mathscr{F}_{\beta}\left(\mathrm{S}^{n-1}\right)$$ ℱ β ( S n − 1 ) , a topic that relates to the Grafakos-Stefanov class. The boundedness and continuity of these operators on Triebel-Lizorkin spaces and Besov spaces are discussed.

Keywords: maximal functions; triebel lizorkin; boundedness continuity; singular integrals; integrals maximal; maximal singular

Journal Title: Science China Mathematics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.