The performance of dye-sensitized solar cells (DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel… Click to show full abstract
The performance of dye-sensitized solar cells (DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel double layer film prepared by TiO2 hierarchical submicrospheres and nanoparticles was reported in this article. The submicrospheres were composed of rutile nanorods of 10 nm diameter and the length of 150–250 nm, which facilitated fast electron transport, charge collection and light scattering. Using a double layer structure consisting of the 10 wt% film as a dye loading layer and the 50 wt% film as the light scattering layer, C101 sensitizer and liquid electrolyte, DSC yielded power conversion efficiency of 9.68% under 1 sun illumination.
               
Click one of the above tabs to view related content.