LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

11.2% Efficiency all-polymer solar cells with high open-circuit voltage

Photo from wikipedia

Herein, we fabricated all-polymer solar cells (all-PSCs) based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor, and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.… Click to show full abstract

Herein, we fabricated all-polymer solar cells (all-PSCs) based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor, and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor. In addition to the complementary absorption and matching energy levels, the optimized blend films possess high cystallinity, predominantly face-on stacking, and a suitable phase separated morphology. With this active layer, the devices exhibited a high Voc of 0.96 V, a superior Jsc of 17.1 mA cm-2, a fine fill factor (FF) of 68.2%, and thus an excellent power conversion efficiency (PCE) of 11.2%, which is the highest value reported to date for single-junction all-PSCs. Furthermore, the devices showed good storage stability. After 80 d of storage in the N2-filled glovebox, the PCE still remained over 90% of the original value. Large-area devices (1.1 cm2) also demonstrated an outstanding performance with a PCE of 9.2%, among the highest values for the reported large-area all-PSCs. These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.

Keywords: efficiency polymer; cells high; polymer solar; large area; solar cells

Journal Title: Science China Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.