LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications

Photo from archive.org

Organic heterostructures (OHSs) consist of organic micro/nanocrystals are of essential importance for the construction of integrated optoelectronics in the future. However, the scarcity of materials and the problem of phase… Click to show full abstract

Organic heterostructures (OHSs) consist of organic micro/nanocrystals are of essential importance for the construction of integrated optoelectronics in the future. However, the scarcity of materials and the problem of phase separation still hinder the fine synthesis of OHSs. Herein, based on the α phase one-dimensional (1D) microrods and the β phase 2D microplates of one organic compound 3,3′-((1 E ,1′ E )-anthracene-9,10-diylbis(ethane-2,1-diyl))dibenzonitril ( m -B 2 BCB), we facilely synthesized the OHSs composed of these two polymorph phases, whose growth mechanism is attributed to the low lattice mismatch rate of 5.8% between (001) plane of α phase (trunk) and (010) crystal plane of β phase (branch). Significantly, the multiport in/output channels can be achieved in the OHSs, which demonstrates the structure-dependent optical signals with the different output channels in the OHSs. Therefore, our experiment exhibits the great prospect of polymorphism in OHSs, which could provide further applications on multifunctional organic integrated photonics circuits.

Keywords: phase; one two; heterostructures composed; organic heterostructures; two dimensional; composed one

Journal Title: Science China Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.