LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bis(4-methylthio)phenyl)amine-based hole transport materials for highly-efficient perovskite solar cells: insight into the carrier ultrafast dynamics and interfacial transport

Photo from wikipedia

Hole transport layers (HTLs) play a significant role in the performance of perovskite solar cells. A new class of linear small-molecules based on bis(4-methylthio)phenyl)amine as an end group, carbon, oxygen… Click to show full abstract

Hole transport layers (HTLs) play a significant role in the performance of perovskite solar cells. A new class of linear small-molecules based on bis(4-methylthio)phenyl)amine as an end group, carbon, oxygen and sulfur as the center atoms for the center unit (denoted as MT-based small-molecule), respectively, have been applied as HTL, and two of them presented the efficiency over 20% in the planar inverted perovskite solar cells (PSCs), which demonstrated a significant improvement in comparison with the widely used HTL, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (known as PEDOT:PSS), in the planar inverted architecture. The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOTPSS samples. The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI 3 can be filled much quicker than that at PEDOT/MAPbI 3 interfaces. Moreover, the hole injection time from MAPbI 3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOTPSS. Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances. These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.

Keywords: hole transport; perovskite solar; bis methylthio; transport; carrier; solar cells

Journal Title: Science China Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.