LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells

Photo from wikipedia

The preparation of suitable hole transport material (HTM) is critical to the performance and stability of perovskite solar cells (PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine… Click to show full abstract

The preparation of suitable hole transport material (HTM) is critical to the performance and stability of perovskite solar cells (PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine decorated with butoxy donor groups (CuPc-OBu) was designed as HTM and prepared by a facile two-step synthetic route. To generate high quality HTM film, 4-tertbutylpyridine (tBP) was doped into CuPc-OBu to prepare the film and then removed by annealing. Such a tBP-assisted strategy resulted in the best efficiency of the PSCs with lead trihalide perovskite up to 19.0% (small-area of 0.1 cm 2 ) and 10.1% (the active area of 8.0 cm 2 for the module device). And the best efficiency of the tin-based PSCs with CuPc-OBu reached to 6.9%. More importantly, the device with CuPc-OBu as HTM revealed the remarkably enhanced stability. This work provides a new strategy to improve the film-quality of free-doping HTMs and enhance the efficiency and stability of Pb- and Sn-based PSCs with low-cost.

Keywords: hole transport; perovskite solar; low cost; soluble copper; cost; solar cells

Journal Title: Science China Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.