The preparation of suitable hole transport material (HTM) is critical to the performance and stability of perovskite solar cells (PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine… Click to show full abstract
The preparation of suitable hole transport material (HTM) is critical to the performance and stability of perovskite solar cells (PSCs) with low-cost. Herein, a mass producible and soluble copper phthalocyanine decorated with butoxy donor groups (CuPc-OBu) was designed as HTM and prepared by a facile two-step synthetic route. To generate high quality HTM film, 4-tertbutylpyridine (tBP) was doped into CuPc-OBu to prepare the film and then removed by annealing. Such a tBP-assisted strategy resulted in the best efficiency of the PSCs with lead trihalide perovskite up to 19.0% (small-area of 0.1 cm 2 ) and 10.1% (the active area of 8.0 cm 2 for the module device). And the best efficiency of the tin-based PSCs with CuPc-OBu reached to 6.9%. More importantly, the device with CuPc-OBu as HTM revealed the remarkably enhanced stability. This work provides a new strategy to improve the film-quality of free-doping HTMs and enhance the efficiency and stability of Pb- and Sn-based PSCs with low-cost.
               
Click one of the above tabs to view related content.