LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent advances in asymmetric synthesis with CO2

Photo from archive.org

Carbon dioxide (CO2) is an important and appealing C1 building block in chemical synthesis due to its nontoxicity, abundance, availability and sustainability. Tremendous progress has been achieved in the chemical… Click to show full abstract

Carbon dioxide (CO2) is an important and appealing C1 building block in chemical synthesis due to its nontoxicity, abundance, availability and sustainability. Tremendous progress has been achieved in the chemical transformation of CO2 into high value-added organic chemicals. However, the asymmetric synthesis with CO2 to form enantioenriched molecules, especially the catalytic process, has lagged far behind. The enantioselective incorporation of CO2 into organic compounds is highly desirable, as the corresponding chiral products, such as carboxylic acids and amino acids, are common structural units in a vast array of natural products and biologically active compounds. Herein, we discuss recent progress toward the enantioselective incorporation of CO2 into organic molecules, which mainly rely on three strategies: 1) kinetic resolution or desymmetrization of epoxides with CO2 to form chiral cyclic carbonates and polycarbonates; 2) nucleophilic attack of O- or N-nucleophiles to CO2 in tandem with asymmetric C−O bond formation to prepare chiral cyclic carbonates and carbamates; 3) direct enantioselective nucleophilic attack of organometallic reagents to CO2 with asymmetric C−C bond formation. Finally, challenges and future outlook in this area are also presented.

Keywords: advances asymmetric; co2; synthesis co2; recent advances; asymmetric synthesis; synthesis

Journal Title: Science China Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.