Genetic modification of large DNA fragments (gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase… Click to show full abstract
Genetic modification of large DNA fragments (gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity. In this study, we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction (PCR) targeting combined with Gibson assembly. In this strategy, the biosynthetic genes for peptidyl moieties (HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid (CPOAA) from the polyoxin biosynthetic gene cluster to generate a ~40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette. The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic, polynik A, was obtained and verified. This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.
               
Click one of the above tabs to view related content.