LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetotail dipolarization fronts and particle acceleration: A review

Photo from wikipedia

In this paper, the particle acceleration processes around magnetotail dipolarization fronts (DFs) were reviewed. We summarize the spacecraft observations (including Cluster, THEMIS, MMS) and numerical simulations (including MHD, test-particle, hybrid,… Click to show full abstract

In this paper, the particle acceleration processes around magnetotail dipolarization fronts (DFs) were reviewed. We summarize the spacecraft observations (including Cluster, THEMIS, MMS) and numerical simulations (including MHD, test-particle, hybrid, LSK, PIC) of these processes. Specifically, we (1) introduce the properties of DFs at MHD scale, ion scale, and electron scale, (2) review the properties of suprathermal electrons with particular focus on the pitch-angle distributions, (3) define the particle-acceleration process and distinguish it from the particle-heating process, (4) identify the particle-acceleration process from spacecraft measurements of energy fluxes, and (5) quantify the acceleration efficiency and compare it with other processes in the magnetosphere (e.g., magnetic reconnection and radiation-belt acceleration processes). We focus on both the acceleration of electrons and ions (including light ions and heavy ions). Regarding electron acceleration, we introduce Fermi, betatron, and non-adiabatic acceleration mechanisms; regarding ion acceleration, we present Fermi, betatron, reflection, resonance, and non-adiabatic acceleration mechanisms. We also discuss the unsolved problems and open questions relevant to this topic, and suggest directions for future studies.

Keywords: dipolarization fronts; acceleration; magnetotail dipolarization; particle acceleration

Journal Title: Science China Earth Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.