LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cascading dam breach process simulation using a coupled modeling platform

Photo from wikipedia

This study evaluates the possibility of a cascade failure by developing a coupled breach-modeling platform based on one-dimensional flow modeling of the river channel, flood propagation, regulation process of reservoir… Click to show full abstract

This study evaluates the possibility of a cascade failure by developing a coupled breach-modeling platform based on one-dimensional flow modeling of the river channel, flood propagation, regulation process of reservoir fluctuation, overtopping with breaching, and wave damping downstream. A hyperbolic model of the DB-IWHR was embedded into the platform to simulate the dam breaching process. Five breach models and software were used to calculate the Tangjiashan barrier lake breaching. The results of a sensitivity study were then compared with the measured data. The peak flow and the time of occurrence were confirmed to be predictable with a reasonable accuracy if the input values were within ranges appropriate for the model. The approach was applied to a case involving two layout planning schemes for a cascade of rock-filled dams under extreme operating conditions. The probability of the failure of a key control cascade downstream caused by a continuous cascade breach upstream was simulated. Moreover, measures to prevent the transmission of risk by advance warnings were investigated. The proposed methodology and the discharge capacity measures provide guidelines to assess the risk to a cascade of dams under extreme operating conditions and offer support for the design criteria of unusual discharge structures for very large dams.

Keywords: dam breach; breach; cascading dam; process; platform; modeling platform

Journal Title: Science China Technological Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.