In recent years, to meet the greater demand for next generation electronic devices that are transplantable, lightweight and portable, flexible and large-scale integrated electronics attract much more attention have been… Click to show full abstract
In recent years, to meet the greater demand for next generation electronic devices that are transplantable, lightweight and portable, flexible and large-scale integrated electronics attract much more attention have been of interest in both industry and academia. Organic electronics and stretchable inorganic electronics are the two major branches of flexible electronics. With the semiconductive and flexible properties of the organic semiconductor materials, flexible organic electronics have become a mainstay of our technology. Compared to organic electronics, stretchable and flexible inorganic electronics are fabricated via mechanical design with inorganic electronic components on flexible substrates, which have stretchability and flexibility to enable very large deformations without degradation of performance. This review summarizes the recent progress on fabrication strategies, such as hydrodynamic organic nanowire printing and inkjet-assisted nanotransfer printing of flexible organic electronics, and screen printing, soft lithography and transfer printing of flexible inorganic electronics. In addition, this review considers large-scale organic and inorganic flexible electronic systems and the future applications of flexible and stretchable electronics.
               
Click one of the above tabs to view related content.