LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method

Photo by cokdewisnu from unsplash

X-ray computed tomography (CT) has emerged as the most prevalent technique to obtain three-dimensional morphological information of granular geomaterials. A key challenge in using the X-ray CT technique is to… Click to show full abstract

X-ray computed tomography (CT) has emerged as the most prevalent technique to obtain three-dimensional morphological information of granular geomaterials. A key challenge in using the X-ray CT technique is to faithfully reconstruct particle morphology based on the discretized pixel information of CT images. In this work, a novel framework based on the machine learning technique and the level set method is proposed to segment CT images and reconstruct particles of granular geomaterials. Within this framework, a feature-based machine learning technique termed Trainable Weka Segmentation is utilized for CT image segmentation, i.e., to classify material phases and to segregate particles in contact. This is a fundamentally different approach in that it predicts segmentation results based on a trained classifier model that implicitly includes image features and regression functions. Subsequently, an edge-based level set method is applied to approach an accurate characterization of the particle shape. The proposed framework is applied to reconstruct three-dimensional realistic particle shapes of the Mojave Mars Simulant. Quantitative accuracy analysis shows that the proposed framework exhibits superior performance over the conventional watershed-based method in terms of both the pixel-based classification accuracy and the particle-based segmentation accuracy. Using the reconstructed realistic particles, the particle-size distribution is obtained and validated against experiment sieve analysis. Quantitative morphology analysis is also performed, showing promising potentials of the proposed framework in characterizing granular geomaterials.

Keywords: framework; set method; machine learning; level set

Journal Title: Acta Geotechnica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.