Both discrete and continuous computational methods are commonly used for model-based simulation of failure evolution. Molecular dynamics (MD) and the finite element method (FEM) are representative discrete particle and continuous… Click to show full abstract
Both discrete and continuous computational methods are commonly used for model-based simulation of failure evolution. Molecular dynamics (MD) and the finite element method (FEM) are representative discrete particle and continuous methods, respectively. The Material Point Method (MPM) is a continuum-based particle method that is formulated based on the weak form of the governing equations in a way similar to the FEM. Here, we report a comparative study of shear-band evolution as predicted by all-atom MD, coarse-grain MD (in which several atoms are subsumed into a single effective particle), and MPM. Overall features of the responses at different scales are summarized, along with a discussion of similarities and differences among the results obtained via the three spatial discretization approaches. This work could serve as a benchmark example for developing multiscale geomechanics under extreme loading scenarios such as earth penetration and underground explosions.
               
Click one of the above tabs to view related content.