LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Hoek–Brown constant mi of quasi-isotropic intact rock using rigidity index approach

Photo from wikipedia

An accurate determination of Hoek–Brown constant mi is of great significance in the estimation of the failure criteria of brittle rock materials. So far, different approaches such as rigidity index… Click to show full abstract

An accurate determination of Hoek–Brown constant mi is of great significance in the estimation of the failure criteria of brittle rock materials. So far, different approaches such as rigidity index method (R-index), uniaxial compressive strength-based method, and tensile strength-based method, and the combination of these two methods (combination based method) have been proposed to calculate the value of mi. This paper aims to thoroughly review the previously existing methods to calculate the value of mi and make comparison between the obtain results to propose the new material constants that provide the best fit with the experimental data. In order to fulfill this goal, a large number of data for different quasi-isotropic intact rock types from the literature were collected and statistically analyzed. Additionally, based on rock types, new material constants are introduced for igneous, sedimentary, and metamorphic rocks. The obtained results proves that for different rock groups (igneous, sedimentary, and metamorphic rocks), R-index method provides the best fit with the experimental data among the others, and it is also independent of rock type. Interestingly enough, there is significant differences in the predicted mi values using different methods, which is more probably due to the quantity and quality of data used in the statistical analysis.

Keywords: brown constant; quasi isotropic; rock; hoek brown; rigidity index; index

Journal Title: Acta Geotechnica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.