LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks

Photo from wikipedia

Geomaterials such as soils and rocks can exhibit inherent anisotropy due to the preferred orientation of mineral grains and/or cracks. They can also be partially saturated with multiple types of… Click to show full abstract

Geomaterials such as soils and rocks can exhibit inherent anisotropy due to the preferred orientation of mineral grains and/or cracks. They can also be partially saturated with multiple types of fluids occupying the pore space. The anisotropic and unsaturated behaviors of geomaterials can be highly interdependent. Experimental studies have shown that the elastic parameters of rocks evolve with saturation. The effect of saturation has also been shown to differ between directions in transversely isotropic clay rock. This gives rise to saturation-dependent stiffness anisotropy. Similarly, permeability anisotropy can also be saturation-dependent. In this study, constitutive equations accommodating saturation-dependent stiffness and hydraulic anisotropy are presented. A linear function is used to describe the relationship between the elastic parameters and saturation, while the relative permeability–saturation relationship is characterized with a log-linear function. These equations are implemented into a hydromechanical framework to investigate the effects of saturation-dependent properties on the shrinkage behavior of clay rocks. Numerical simulations are presented to demonstrate the role of saturation-dependent stiffness and hydraulic anisotropy in shrinkage behavior. The results highlight that strain anisotropy and time evolution of pore pressures are substantially influenced by saturation-dependent stiffness and hydraulic anisotropy.

Keywords: shrinkage behavior; saturation dependent; dependent stiffness; saturation; clay; anisotropy

Journal Title: Acta Geotechnica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.