LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatio-temporal patterns of drought evolution over the Beijing-Tianjin-Hebei region, China

Photo from wikipedia

Spatio-temporal patterns of drought from 1961 to 2013 over the Beijing-Tianjin-Hebei (BTH) region of China were analyzed using the Palmer Drought Severity index (PDSI) based on 21 meteorological stations. Overall,… Click to show full abstract

Spatio-temporal patterns of drought from 1961 to 2013 over the Beijing-Tianjin-Hebei (BTH) region of China were analyzed using the Palmer Drought Severity index (PDSI) based on 21 meteorological stations. Overall, changes in the mean-state of drought detected in recent decades were due to decreases in precipitation and potential evapotranspiration. The Empirical Orthogonal Functions (EOF) method was used to decompose drought into spatio-temporal patterns, and the first two EOF modes were analyzed. According to the first leading EOF mode (48.5%), the temporal variability (Principal Components, PC1) was highly positively correlated with annual series of PDSI (r=+0.99). The variance decomposition method was further applied to explain the inter-decadal temporal and spatial variations of drought relative to the total variation. We find that 90% of total variance was explained by time variance, and both total and time variance dramatically decreased from 1982 to 2013. The total variance was consistent with extreme climate events at the inter-decadal scale (r=0.71, p<0.01). Comparing the influence of climate change on the annual drought in two different long-term periods characterized by dramatic global warming (P1: 1961–1989 and P2: 1990–2013), we find that temperature sensitivity in the P2 was three times more than that in the P1.

Keywords: tianjin hebei; spatio temporal; patterns drought; temporal patterns; variance; beijing tianjin

Journal Title: Journal of Geographical Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.