LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suppressing laser phase noise in an optomechanical system

Photo by nci from unsplash

We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength. In the scheme, the parametric amplification terms, created by Kerr and Duffing nonlinearities,… Click to show full abstract

We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength. In the scheme, the parametric amplification terms, created by Kerr and Duffing nonlinearities, can restrain laser phase noise and strengthen the effective optomechanical coupling, respectively. Interestingly, decreasing laser phase noise leads to increasing thermal noise, which is inhibited by bringing in a broadband-squeezed vacuum environment. To reflect the superiority of the scheme, we simulate quantum memory and stationary optomechanical entanglement as examples, and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed. Our method can pave the way for studying other quantum phenomena.

Keywords: suppressing laser; phase noise; laser phase

Journal Title: Frontiers of Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.