The polarization characteristics of high-birefringence photonic crystal fiber (HB-PCF) selectively coated with silver layers are numerically investigated using the full-vector finite element method (FEM). The fundamental mode coupling properties and… Click to show full abstract
The polarization characteristics of high-birefringence photonic crystal fiber (HB-PCF) selectively coated with silver layers are numerically investigated using the full-vector finite element method (FEM). The fundamental mode coupling properties and polarization splitting effect are discussed in detail. Results show that the resonance wavelength, resonance strength, and splitting distance between two polarized modes can be adjusted significantly by changing the fiber structure, the diameter of silver rings, and the thickness of silver layers. A single-polarization filter at 1310 nm bands is proposed with the corresponding loss 500 dB/cm and full width half maximum (FWHM) only 23 nm. This work is very helpful for further studies in polarization-dependent wavelength-selective applications or other fiber-based plasmonic devices.
               
Click one of the above tabs to view related content.