LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Air Microcavity of Channel SPP Waveguide HALby Graphene Material

Photo from wikipedia

The two-dimensional material, represented by graphene, is an immediate research focus of interdisciplinary fields, such as nanophotonics and life sciences. The unique advantages of surface plasmon polaritons, such as enhanced… Click to show full abstract

The two-dimensional material, represented by graphene, is an immediate research focus of interdisciplinary fields, such as nanophotonics and life sciences. The unique advantages of surface plasmon polaritons, such as enhanced transmission and sub-wavelength structure, bring opportunities for achieving all optical circuits. In this paper, based on graphene, silicon dioxide, air cavity, and so on, a novel channel surface plasma waveguide was developed. By contrasting the waveguide characteristics of graphene and gold, it is found that the mode field could be restricted in air cavity region using graphene, and the deep sub-wavelength of light field was restrained. Besides, through finite element simulation, it is investigated that propagation losses could be as low as 0.019 dB/μm, the area of normalized mode field could be as low as 0.014 λ2, and the limiting factor is 0.5. Compared with the current waveguide, the above result shows that the propagation losses is an order of magnitude lower; 20.52% of limiting factor is promoted, besides; better waveguide characteristics could be obtained with realization of sub-wavelength optical field limit. Meanwhile, the production process of waveguide structure is simple, and it is an important way to solve the high speed and miniaturization and integration of optoelectronic integrated technology in the future.

Keywords: sub wavelength; field; air; channel; waveguide; material

Journal Title: Plasmonics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.