LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Tunable Double-Decker Ultra-Broadband THz Absorber Based on a Phase Change Material

Photo from wikipedia

In this paper, a tunable double-decker ultra-broadband THz absorber is proposed based on a phase change material, which is vanadium dioxide (VO2). The tailored tunable double-decker phase change material absorber… Click to show full abstract

In this paper, a tunable double-decker ultra-broadband THz absorber is proposed based on a phase change material, which is vanadium dioxide (VO2). The tailored tunable double-decker phase change material absorber (TDPA) can be regulated by the temperature. The absorption of such TDPA spans from 7.36 to 16.67 THz when the temperature is equal to 350 K for TE wave, which is over 90% and its relative bandwidth is 77.4% under the circumstances. But such a TDPA can be regarded as a perfect reflector when the temperature is 300 K. When the incident angle is oblique, the absorption also is investigated, which shows that the presented TDPA is incident-angle-independent, when the incident angle is less than 40°. The relationship between the absorption features and the structure parameters is also discussed. The distributions of current surface, the electric fields, and the power loss densities are given to expound the physical mechanism of such a TDPA. Besides, by setting different temperature, a reconfigurable device can be realized in the proposed TDPA.

Keywords: change material; double decker; phase change; tunable double

Journal Title: Plasmonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.