LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron Cloud Density Generated by Microring-Embedded Nano-grating System

Photo from wikipedia

We propose the use of the electron cloud generated by quasi-particle waves called polariton dipoles, which oscillated within a silicon microring-embedded gold grating system for quantum consciousness processing model. An… Click to show full abstract

We propose the use of the electron cloud generated by quasi-particle waves called polariton dipoles, which oscillated within a silicon microring-embedded gold grating system for quantum consciousness processing model. An embedded gold grating is coupled by a whispering gallery mode beam generated by a soliton pulse, from which the polariton waves oscillated with the plasma frequency at the Bragg wavelength. The excited polariton cloud by the external stimuli can be detected at the system output ports. The two states of the polariton (electron) are spin-up and spin-down that can process automatically and deliver to the network and cloud. In manipulation, the results obtained show the electron density increased by increasing the input power into the system. In application, the cell polariton cloud coupled by the external stimuli and patterned by the quantum cellular automata results, which localized in the cloud network and connected to the nerve cell access nodes. The coded polaritons connected to the nerve cell memory clouds, while the required commands are delivered to resonant cells via the network link. More stenographic codes can also be generated by other external stimuli sources, which can process similarly.

Keywords: system; grating system; density; electron cloud; microring embedded

Journal Title: Plasmonics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.